1. Главная страница » Компьютеры » Pci express mini card что это

Pci express mini card что это

Автор: | 16.12.2019

Компьютерный пакостник брингин ю зе бест.

Что поставить в MiniPCI-e

В большинстве современных ноутбуков платы расширения внутри реализованы в формфакторе и с разъёмом MiniPCI-e. Обычно он занят карточкой WiFi, но, помимо одного занятого, часто бывает, что существует и второй разъём, не занятый ничем. Доступ к нему обычно не сложнее, чем к памятижёсткому дискудругим карточкам расширения, хотя в некоторых ноутбуках для этого придётся снимать нижнюю крышку.

Раз разъём есть- возникает вопрос, для чего же его можно использовать.

Формат Mini PCI-e –это мобильная версия pci express, куда дополнительно выведен usb 2.0 и несколько контактов,которые могут быть использованы производителями по своему усмотрению. Оказывается, что на самом деле устройств, которые туда можно воткнуть, не так уж и мало, была бы необходимость. Я подумал, что, раз вопрос “а что туда можно поставить” задают, то и ответить на него можно подробнее, чем обычно.

Вот сам перечень железок. Я не ставил целью собрать и описать тут всё, но большую часть –точно. Цена на железки –указана на ebay.com, и я брал не самый дешёвый вариант. Обычно цена-вместе с доставкой, но это уже надо уточнять тогда, когда вы решите её купить-продавцы и условия разные.

  1. WiFi card. Карта для беспроводного интернета. Проще некуда, и именно так обычно используется как минимум один слот. Для чего нужна замена – во-первых, если хочется поставить более быструю карту (стандарта “N” вместо “G”). Во-вторых, если вы решили поставить MacOS, то в ней поддерживаются далеко не все карты, а совместимая стоит недорого. В третьих, для расширения возможностей карты – например, продаются комбинированные карточки WiFi/Bluetooth или WiFi/WiMax. Что обязательно надо помнить-это то, что любая wifi карта такого формата требует подключения антенн, это два или три (для полноценного “N”) провода, которые располагаются в крышке ноутбука, под экраном. Нет антенны- нет сигнала. Длина проводов ,которые уже у вас в ноутбук есть, обычно достаточна для подключения карты только в тот слот, где подобная карта уже стоит, а второй слот-может быть расположен гораздо дальше. Для замены антенн или прокладывания новых-придётся разбирать ноутбук почти целиком, в т.ч. –разобрать экран. На фото выше-такая карта стандартного размера, под ней- формфактор half size, половинный размер. Цена таких карточек- до 10usd за китайские безымянные, и около 25 за брендированные. По сути, разницы нет. Карты с поддержкой стандарта N или вместе с bluetooth –подороже, но порядок цены остаётся.
  2. Broadcom HD v работать “на полную катушку”. Плюс- один, зато огромный: за относительно небольшие деньги вы получаете возможность использования видеокарты, которая может быть в десятки и сотни раз быстрее, чем встроенная в ваш ноутбук.

Архитектура ЭВМ

Компоненты ПК

Интерфейсы

Мини блог

Самое читаемое

Физический уровень и конструктивы PCI Express

Физический уровень интерфейса допускает как электрическую, так и оптическую реализацию. Базовое соединение электрического интерфейса (1x) состоит из двух дифференциальных низковольтных сигнальных пар — передающей (сигналы PETp0, PETn0) и принимающей (PERp0, PERn0). В интерфейсе применена развязка передатчиков и приемников по постоянному току, что обеспечивает совместимость компонентов независимо от технологии изготовления компонентов и снимает некоторые проблемы передачи сигналов. Для передачи используется самосинхронизирующееся кодирование, что позволяет достигать высоких скоростей передачи. Базовая скорость — 2,5 Гбит/с «сырых» данных (после кодирования 8B/10B) в каждую сторону, в перспективе планируются и более высокие скорости. Для масштабирования пропускной способности возможно агрегирование сигнальных линий (lanes, сигнальных пар в электрическом интерфейсе), по одинаковому числу в обоих направлениях. Спецификация рассматривает варианты соединений из 1, 2, 4, 8, 12, 16 и 32 линий (обозначаются как x1, x2, x4, x8, x12, x16 и x32); передаваемые данные между ними распределяются побайтно. В каждой из линий самосинхронизация выплняется независимо, так что явление переноса (бич параллельных интерфейсов) отсутствует. Таким образом достижима скорость до 32×2,5 = 80 Гбит/с, что примерно соответствует пиковой скорости 8 Гбайт/с. Во время аппаратной инициализации в каждом соединении согласуется число линий и скорость передачи; согласование выполняется на низком уровне без какого-либо программного участия. Согласованные параметры соединения действуют на все время последующей работы.

Обеспечение «горячего» подключение на физическом уровне PCI Express не требует каких-либо дополнительных аппаратных затрат, поскольку двухточечное соединение не затрагивает «лишних» участников. Безопасная коммутация сигналов не требуется, возможности подключаемого устройства никак не влияют на режимы работы остальных устройств.

Малое число сигнальных контактов интерфейса дает большую свободу в выборе конструктивных реализаций PCI Express:

  • соединение компонентов в пределах платы;
  • слоты и карты расширения в конструктивах PC/AT и ATX;
  • внутренние и внешние карты расширения мобильных ПК;
  • малогабаритные модули ввода/вывода для серверов и коммуникационной аппаратуры;
  • модули для промышленных компьютеров;
  • разъемное подключение «дочерних» карт (mezannine interface);
  • кабельные соединения блоков.

Для карт расширения в конструктивах PC/AT и ATX предусматриваются разные модификации разъема-слота PCI Express, отличающиеся числом пар сигнальных линий (x1, x4, x8, x16) и, соответственно, размером (см. рисунок ниже). При этом в слоты большего размера можно устанавливать карты с разъемом того же размера или меньшего (это называется Up-plugging). Однако противоположный вариант (Downplugging) — большую карту в меньший слот — механически невозможен (в PCI/PCI-X это возможно). Как было показано выше, самый маленький вариант PCI Express обеспечивает пропускную способность на уровне стандартной шины PCI.

Назначение контактов слотов PCI Express приведено в таблице ниже.

Набор сигналов интерфейса PCI Express невелик:

  • PETp0, PETn0… PETp15, PETn15 — выходы передатчиков сигнальных пар 0…15;
  • PERp0, PERn0… PERp15, PERn15 — входы приемников;
  • REFCLK+ и REFCLK — сигналы опорной частоты 100 МГц;
  • PERST# — сигнал сброса карты;
  • WAKE# — сигнал «пробуждения» (от карты);
  • PRSNT1#, PRSNT2# — сигналы обнаружения подключения-отключения карты для системы горячего подключения. На карте эти цепи соединяются между собой, причем для PRSNT2# выбирается контакт с самым большим номером. Это позволяет точнее отслеживать моменты подключения-отключения (в случае наклона карты). Для определения числа линий подключенной карты данные линии не используются — разрядность линий определяется автоматически при установлении соединения (в процедуре тренировки).
Читайте также:  Philips e line 246e7q

Дополнительно на слоте имеются необязательные сигналы шины SMBus (SMB_CLK и SMB_DATA) и интерфейса JTAG (TCLK, TDI, TDO, TMS, TRST#).

Питание на карты подается по следующим шинам:

  • +3,3V — основное питание +3 В при токе до 9 А;
  • +12V — основное питание +12 В при токе до 0,5/2,1/4,4А для слотов x1/x4, x8/x16 соответственно;
  • +3,3Vaux — дополнительное питание, ток до 375 мА в системах, способных к пробуждению по сигналу от карты и до 20 мА в непробуждаемых системах.

Таблица. Разъемы PCI Express

Ряд B Ряд A
1 +12V PRSNT1#
2 +12V +12V
3 Резерв +12V
4 GND GND
5 SMB_CLK TCK
6 SMB_DATA TDI
7 GND TDO
8 +3.3 V TMS
9 TRST# +3.3 V
10 +3.3 Vaux +3.3 V
11 WAKE# PERST#
КЛЮЧ
12 Резерв GND
13 GND REFCLK+
14 PETp0 REFCLK-
15 PETn0 GND
16 GND PERp0
17 PRSNT2# PERn0
18 GND GND
Конец x1-коннектора
19 PETp1 Резерв
20 PETn1 GND
21 GND PERp1
22 GND PERn1
23 PETp2 GND
24 PETn2 GND
25 GND PERp2
26 GND PERn2
27 PETp2 GND
28 PETn2 GND
29 GND PERp3
30 Резерв PERn3
31 PRSNT2# GND
32 GND Резерв
Конец x4-коннектора
33 PETp4 Резерв
34 PETn4 GND
35 GND PERp4
36 GND PERn4
37 PETp5 GND
38 PETn5 GND
39 GND PERp5
40 GND PERn5
41 PETp6 GND
42 PETn6 GND
43 GND PERp6
44 GND PERn6
45 PETp7 GND
46 PETn7 GND
47 GND PERp7
48 PRSNT2# PERn7
49 GND GND
Конец x8-коннектора
50 PETp8 Резерв
51 PETn8 GND
52 GND PERp8
53 GND PERn8
54 PETp9 GND
. . .
79 PETn15 GND
80 GND PERp15
81 PRSNT2# PERn15
82 GND GND
Конец x16-коннектора

Для мобильных компьютеров PCMCIA ввела конструктив ExpressCard (см. следующий рисунок), для которого на системный разъем выводится два интерфейса: PCI Express (1x) и USB 2.0. Модули ExpressCard компактнее прежних карт PCMCIA (PC Card и CardBus); предлагается две модификации, различающиеся по ширине: ExpressCard/34 (34×75×5 мм) и ExpressCard/54 (54×75×5 мм). Толщина модулей всего 5 мм, но, если требуется, то более длинные модули могут иметь утолщения в части, выходящие за габариты корпуса компьютера (за пределами 75 мм от края разъема). Как и прежние карты PCIMCIA, карты ExpressCard доступны пользователям и поддерживают «горячее» подключение.

Для внутренних карт расширения блокнотных ПК введен конструктив Mini PCI Express (см. рисунок ниже), формат которого происходит от Mini PCI Type IIIA. Благодаря уменьшению числа контактов ширина карты уменьшена до 30 мм, так что на месте одной карты Mini PCI можно разместить пару карт Mini PCI Express. На разъем карты (см. таблицу ниже) кроме PCI Express выведены интерфейсы последовательных шин USB 2.0 (USB_D+ и USB_D-) и SMBus (SMB_CLK и SMB_DATA), питание +3,3 В (750 мА основное и 250 мА дополнительное) и +1,5 В (375 мА). Собственно интерфейс PCI Express (x1) занимает всего 6 контактов (выходы передатчика PETp0 и PETn0, входы приемника PERp0 и PERn0, а также сигналы опорной частоты 100 МГц REFCLK+ и REFCLK-. Сигнал PERST# — сброс карты, сигнал WAKE# — «пробуждение» (от карты). Сигналы LED_Wxxx# служат для управления светодиодными индикаторами состояния.

Таблица. Разъемы Mini PCI Express

Цепь Цепь
1 WAKE# 2 3.3 V
3 Резерв 4 GND
5 Резерв 6 1.5 V
7 Резерв 8 Резерв
9 GND 10 Резерв
11 REFCLK+ 12 Резерв
13 REFCLK- 14 Резерв
15 GND 16 Резерв
Ключ
17 Резерв 18 GND
19 Резерв 20 Резерв
21 GND 22 PERST#
23 PERn0 24 +3.3 V
25 PERp0 26 GND
27 GND 28 +1.5 V
29 GND 30 SMB_CLK
31 PETn0 32 SMB_DATA
33 PETp0 34 GND
35 GND 36 USB_D-
37 Резерв 38 USB_D+
39 Резерв 40 GND
41 Резерв 42 LED_WWAN#
43 Резерв 44 LED_WLAN#
45 Резерв 46 LED_WPAN#
47 Резерв 48 +1.5 V
49 Резерв 50 GND
51 Резерв 52 +3.3 V

С интерфейсом PCI Express удобно компонуются модули ввода/вывода и сетевых интерфейсов для серверов и коммуникационных устройств стоечного исполнения. Такие модули могут быть достаточно компактными (высота 2U не вызывает проблем размещения разъема), при этом производительности интерфейса достаточно даже для таких критичных модулей, как Fibre Channel, Gigabit Ethernet (GbE), 10GbE.

Интерфейс PCI Express принимается и для промышленных компьютеров, для чего имеются спецификации PICMG 3.4 (малогабаритные конструктивы для x1, x2 и x4), а также конструктивы в формате Compact PCI.

Интерфейс PCI Express существует и в кабельном исполнении для кабельных соединений блоков, находящихся на небольшом удалении друг от друга. Так, например, по PCI Express можно подключать док-станции к блокнотным ПК. Возможность вывода интерфейса системного уровня за пределы корпуса компьютера из предшественников PCI Express поддерживала только шина ISA, и то только при низких скоростях обмена (на частотах до 5 МГц). Из новых последовательных интерфейсов системного уровня эта возможность имеется и в InfiniBand. Наличие кабельного варианта высокопроизводительного интерфейса системного уровня может позволить отойти от традиционной компоновки компьютера, при которой в системном блоке концентрируются все компоненты, требующие интенсивного обмена с ядром компьютера.

PCI Express, или PCIe, или PCI-E (также известная как 3GIO for 3rd Generation I/O; не путать с PCI-X и PXI) — компьютерная шина (хотя на физическом уровне шиной не является, будучи соединением типа «точка-точка»), использующая программную модель шины PCI и высокопроизводительный физический протокол, основанный на последовательной передаче данных.

Разработка стандарта PCI Express была начата фирмой Intel после отказа от шины InfiniBand. Официально первая базовая спецификация PCI Express появилась в июле 2002 года. Развитием стандарта PCI Express занимается организация PCI Special Interest Group.

Описание Править

В отличие от стандарта PCI, использовавшего для передачи данных общую шину с подключением параллельно нескольких устройств, PCI Express, в общем случае, является пакетной сетью с топологией типа звезда.

Устройства PCI Express взаимодействуют между собой через среду, образованную коммутаторами, при этом каждое устройство напрямую связано соединением типа точка-точка с коммутатором.

Кроме того, шиной PCI Express поддерживается:

  • горячая замена карт;
  • гарантированная полоса пропускания (QoS);
  • управление энергопотреблением;
  • контроль целостности передаваемых данных.

Шина PCI Express нацелена на использование только в качестве локальной шины. Так как программная модель PCI Express во многом унаследована от PCI, то существующие системы и контроллеры могут быть доработаны для использования шины PCI Express заменой только физического уровня, без доработки программного обеспечения. Высокая пиковая производительность шины PCI Express позволяет использовать её вместо шин AGP и тем более PCI и PCI-X. Де-факто PCI Express заменила эти шины в персональных компьютерах.

Читайте также:  Asrock j4205 itx mini itx

Разъёмы Править

  • MiniCard (Mini PCIe) — замена форм-фактора Mini PCI. На разъём Mini Card выведены шины: x1 PCIe, USB 2.0 и SMBus.
  • ExpressCard — подобен форм-фактору PCMCIA. На разъём ExpressCard выведены шины x1 PCIe и USB 2.0, карты ExpressCard поддерживают горячее подключение.
  • AdvancedTCA — форм-фактор для телекоммуникационного оборудования.
  • Mobile PCI Express Module (MXM) — промышленный форм-фактор, созданный для ноутбуков фирмой NV > PCI Express X1 Править
Выводы PCI Express X1
№ вывода Назначение № вывода Назначение
B1 +12V A1 PRSNT1#
B2 +12V A2 +12V
B3 +12V A3 +12V
B4 GND A4 GND
B5 SMCLK A5 JTAG2
B6 SMDAT A6 JTAG3
B7 GND A7 JTAG4
B8 +3.3V A8 JTAG5
B9 JTAG1 A9 +3.3V
B10 3.3V__AUX A10 3.3V
B11 WAKE# A11 PERST#
Перегородка
B12 RSVD A12 GND_A12
B13 GND A13 REFCLK+
B14 PETP0 A14 REFCLK-
B15 PETN0 A15 GND
B16 GND A16 PERP0
B17 PRSNT2# A17 PERN0
B18 GND A18 GND

Mini PCI-E Править

Mini PCI Express — формат шины PCI Express для портативных устройств.

Для этого стандарта разъёма выпускается много периферийных устройств:

  • WiFi-карты
  • WiMax-карты
  • GSM-модемы
  • GPS-приёмники
  • SSD-накопители — использует нестандартную распиновку разъёма Mini PCI-E (SSD Mini PCI Express)
  • Контроллеры USB (2.0 или 3.0), SATA (I, II или III)
  • Контроллер COM-портов (RS232)
  • SMBus
  • Выводы для индикаторных светодиодов
  • Выводы подключения СИМ карт (для GSM WCDMA) [1]
  • Имеет зарезервированные контакты (для будущих устройств)
  • Питание 1.5 В и 3.3 В
Выводы Mini PCI-E
№ вывода Назначение № вывода Назначение
51 Зарезервировано 52 +3.3V
49 Зарезервировано 50 GND
47 Зарезервировано 48 +1.5V
45 Зарезервировано 46 LED_WPAN#
43 Зарезервировано 44 LED_WLAN#
41 Зарезервировано (+3.3V) 42 LED_WWAN#
39 Зарезервировано (+3.3V) 40 GND
37 Зарезервировано (GND) 38 USB_D+
35 GND 36 USB_D-
33 PETp0 34 GND
31 PETn0 32 SMB_DATA
29 GND 30 SMB_CLK
27 GND 28 +1.5V
25 PERp0 26 GND
23 PERn0 24 +3.3Vaux
21 GND 22 PERST#
19 Зарезервировано (UIM_C4) 20 W_DISABLE#
17 Зарезервировано (UIM_C8) 18 GND
Перегородка
15 GND 16 UIM_VPP
13 REFCLK+ 14 UIM_RESET
11 REFCLK- 12 UIM_CLK
9 GND 10 UIM_DATA
7 CLKREQ# 8 UIM_PWR
5 Зарезервировано (COEX2) 6 1.5V
3 Зарезервировано (COEX1) 4 GND
1 WAKE# 2 3.3V

Файл:MiniPCI and MiniPCI Express cards.jpg

SSD Mini PCI Express Править

  • PATA
  • SATA
  • USB
  • Питание 3.3 В

Контакты SSD Mini PCI ExpressШаблон:Нет АИ

33 Sata TX+ 34 GND
31 Sata TX- 32 IDE_DMARQ
29 GND 30 IDE_DMACK
27 GND 28 IDE_IOREAD
25 Sata RX+ 26 GND
23 Sata RX- 24 IDE_IOWR
21 GND 22 IDE_RESET
19 IDE_D7 20 IDE_D8
17 IDE_D6 18 GND
Перегородка Перегородка
15 GND 16 IDE_D9
13 IDE_D5 14 IDE_D10
11 IDE_D4 12 IDE_D11
9 GND 10 IDE_D12
7 IDE_D3 8 IDE_D13
5 IDE_D2 6 IDE_D14
3 IDE_D1 4 GND
1 IDE_D0 2 IDE_D15

ExpressCard Править

Слоты ExpressCard на настоящее время (ноябрь 2010) применяются для подключения: [2]

  • Плат SSD накопителей
  • Видеокарт
  • Контроллеров 1394/FireWire (iLINK)
  • Док-станций
  • Измерительных приборов
  • Памяти
  • Адаптеров карт памяти (CF, MS, SD, xD, и т. д.)
  • Мышей
  • Сетевых адаптеров
  • Параллельных портов
  • Адаптеров PC Card/PCMCIA
  • Расширения PCI
  • Расширения PCI Express
  • Дистанционного управления
  • Контроллеров SATA
  • Последовательных портов
  • Адаптеров SmartCard
  • ТВ-тюнеров
  • Контроллеров USB
  • Беспроводных сетевых адаптеров Wi-Fi
  • Беспроводных широкополосных интернет-адаптеров (3G, CDMA, EVDO, GPRS, UMTS, и т. д.)
  • Звуковых карт для домашнего мультимедиа и профессиональных аудиоинтерфейсов.

Описание протокола Править

Для подключения устройства PCI Express используется двунаправленное последовательное соединение типа точка-точка, называемое линией (Шаблон:Lang-en — полоса, ряд); это резко отличается от PCI, в которой все устройства подключаются к общей 32-разрядной параллельной двунаправленной шине.

Соединение (Шаблон:Lang-en — связь, соединение) между двумя устройствами PCI Express состоит из одной (x1) или нескольких (x2, x4, x8, x12, x16 и x32) двунаправленных последовательных линий. Каждое устройство должно поддерживать соединение, по крайней мере, с одной линией (x1).

На электрическом уровне каждое соединение использует низковольтную дифференциальную передачу сигнала (LVDS), приём и передача информации производится каждым устройством PCI Express по отдельным двум проводникам, таким образом, в простейшем случае устройство подключается к коммутатору PCI Express всего лишь четырьмя проводниками.

Использование подобного подхода имеет следующие преимущества:

  • карта PCI Express помещается и корректно работает в любом слоте той же или большей пропускной способности (например, карта x1 будет работать в слотах x4 и x16);
  • слот большего физического размера может использовать не все линии (например, к слоту x16 можно подвести проводники передачи информации, соответствующие x1 или x8, и всё это будет нормально функционировать; однако при этом необходимо подключить все проводники питания и заземления, необходимые для слота x16).

В обоих случаях на шине PCI Express будет использоваться максимальное количество линий, доступных как для карты, так и для слота. Однако это не позволяет устройству работать в слоте, предназначенном для карт с меньшей пропускной способностью шины PCI Express. Например, карта x4 физически не поместится в стандартный слот x1, несмотря на то, что она могла бы работать в слоте x1 с использованием только одной линии. На некоторых материнских платах можно встретить нестандартные слоты x1 и x4, у которых отсутствует крайняя перегородка, таким образом, в них можно устанавливать карты большей длины, чем разъем. При этом не обеспечивается питание и заземление выступающей части карты, что может привести к различным проблемам.

PCI Express пересылает всю управляющую информацию, включая прерывания, через те же линии, что используются для передачи данных. Последовательный протокол никогда не может быть заблокирован, таким образом задержки шины PCI Express вполне сравнимы с таковыми для шины PCI (заметим, что шина PCI для передачи сигнала о запросе на прерывание использует отдельные физические линии IRQ#A, IRQ#B, IRQ#C, IRQ#D).

Во всех высокоскоростных последовательных протоколах (например, гигабитный Ethernet), информация о Шаблон:D- должна быть встроена в передаваемый сигнал. На физическом уровне PCI Express использует метод канального кодирования 8b/10b (8 бит в десяти, избыточность — 20 %) для устранения постоянной составляющей в передаваемом сигнале и для встраивания информации о синхронизации в поток данных. В PCI Express 3.0 используется более экономное кодирование 128b/130b с избыточностью 1,5 %.

Читайте также:  Fatal directx error code 3

Некоторые протоколы (например, SONET/SDH) используют метод, который называется скремблинг (англ. scrambling) для встраивания информации о синхронизации в поток данных и для «размывания» спектра передаваемого сигнала. Спецификация PCI Express также предусматривает функцию скремблинга, но скремблинг PCI Express отличается от такового для SONET.

Пропускная способность Править

Битрейт в PCIe 1.0 составляет 2,5 Гбит/с. Для расчёта пропускной способности шины необходимо учесть дуплексность [3] и избыточность 8b/10b (8 бит в десяти) (для PCI-E 3 и выше — 128/130). Например, дуплексная пропускная способность соединения x1 составляет:

2,5 · 2 · 0,8 = 4 Гбит/с
где:

  • 2,5 — битрейт, Гбит/с;
  • 2 — учёт дуплексности (двунаправленности);
  • 0,8 — учёт избыточности 8b/10b для 1.0 и 2.0; 0,985 — 128b/130b для 3.0;
В одну/обе стороны, Гбит/с

Связей
x1 x2 x4 x8 x12 x16 x32
PCIe 1.0 2/4 4/8 8/16 16/32 24/48 32/64 64/128
PCIe 2.0 4/8 8/16 16/32 32/64 48/96 64/128 128/256
PCIe 3.0 8/16 16/32 32/64 64/128 96/192 128/256 256/512
PCIe 4.0 (предварительно) [4] 16/32 32/64 64/128 128/256 192/384 256/512 512/1024

Шина UMI — представляет собой модифицированный интерфейс PCI-E x4 c вдвое увеличенной пропускной способностью, за счет перехода с первой на вторую версию стандарта. Входит в состав чипсета AMD Fusion A55.

Конкурирующие протоколы Править

Кроме PCI Express, существует ещё ряд высокоскоростных стандартизованных последовательных интерфейсов, вот только некоторые из них: HyperTransport, InfiniBand, RapidIO, и StarFabric. Каждый интерфейс имеет своих сторонников среди промышленных компаний, так как на разработку спецификаций протоколов уже ушли значительные суммы, и каждый консорциум стремится подчеркнуть преимущества именно своего интерфейса над другими.

Стандартизированный высокоскоростной интерфейс, с одной стороны, должен обладать гибкостью и расширяемостью, а с другой стороны, должен обеспечивать низкое время задержки и невысокие накладные расходы (то есть доля служебной информации пакета не должна быть велика). В сущности, различия между интерфейсами заключаются именно в выбранном разработчиками конкретного интерфейса компромиссе между этими двумя конфликтующими требованиями.

К примеру, дополнительная служебная маршрутная информация в пакете позволяет организовать сложную и гибкую маршрутизацию пакета, но увеличивает накладные расходы на обработку пакета, также снижается пропускная способность интерфейса, усложняется программное обеспечение, которое инициализирует и настраивает устройства, подключенные к интерфейсу. При необходимости обеспечения горячего подключения устройств необходимо специальное программное обеспечение, которое бы отслеживало изменение в топологии сети. Примерами интерфейсов, которые приспособлены для этого, являются RapidIO, InfiniBand и StarFabric.

В то же время, укорачивая пакеты, можно уменьшить задержку при передаче данных, что является важным требованием к интерфейсу памяти. Но небольшой размер пакетов приводит к тому, что доля служебных полей пакета увеличивается, что снижает эффективную пропускную способность интерфейса. Примером интерфейса такого типа является HyperTransport.

Положение PCI Express — между описанными подходами, так как шина PCI Express предназначена для работы в качестве локальной шины, нежели шины процессор-память или сложной маршрутизируемой сети. Кроме того, PCI Express изначально задумывалась как шина, логически совместимая с шиной PCI, что также внесло свои ограничения.

PCI Express 2.0 Править

Группа PCI-SIG выпустила спецификацию PCI Express 2.0 15 января 2007 года. Основные нововведения в PCI Express 2.0:

  • Увеличенная пропускная способность: ПСП одной линии 500 МБ/с, или 5 ГТ/с (Гигатранзакций/с).
  • Внесены усовершенствования в протокол передачи между устройствами и программную модель.
  • Динамическое управление скоростью (для управления скоростью работы связи).
  • Оповещение о пропускной способности (для оповещения ПО об изменениях скорости и ширины шины).
  • Шаблон:Уточнить 2 — расширение управляющих регистров для лучшего управления устройствами, слотами и интерконнектом).
  • Службы управления доступом — опциональные возможности управления транзакциями точка-точка.
  • Управление таймаутом выполнения.
  • Сброс на уровне функций — опциональный механизм для сброса функций (Шаблон:Lang-en) внутри устройства (Шаблон:Lang-en).
  • Переопределение предела по мощности (для переопределения лимита мощности слота при присоединении устройств, потребляющих бо́льшую мощность).

PCI Express 2.0 полностью совместим с PCI Express 1.1 (старые видеокарты будут работать в системных платах с новыми разъемами, но только на скорости 2,5 ГТ/с, так как старые чипсеты не могут поддерживать удвоенную скорость передачи данных; новые видеоадаптеры будут без проблем работать в старых разъемах стандарта PCI Express 1.х.).

Внешняя кабельная спецификация PCIe

7 февраля 2007 года PCI-SIG выпустила спецификацию внешней кабельной системы PCIE. Новая спецификация позволяет использовать кабели длиной до 10 метров, работающие с пропускной способностью 2,5 ГТ/с.

PCI Express 2.1 Править

По физическим характеристикам (скорость, разъём) соответствует 2.0, в программной части добавлены функции, которые в полной мере планируют внедрить в версии 3.0. Так как большинство системных плат продаются с версией 2.0, наличие только видеокарты с 2.1 не даёт задействовать режим 2.1.

PCI Express 3.0 Править

В ноябре 2010 года [5] были утверждены спецификации версии PCI Express 3.0. Интерфейс обладает скоростью передачи данных 8 GT/s (Гигатранзакций/с). Но, несмотря на это, его реальная пропускная способность всё равно была увеличена вдвое по сравнению со стандартом PCI Express 2.0. Этого удалось достигнуть благодаря более агрессивной схеме кодирования 128b/130b, когда 128 бит данных, пересылаемых по шине, кодируются 130 битами. При этом сохранилась полная совместимость с предыдущими версиями PCI Express. Карты PCI Express 1.x и 2.x будут работать в разъёме 3.0 и, наоборот, карта PCI Express 3.0 будет работать в разъёмах 1.х и 2.х. По данным PCI-SIG, первые тесты PCI Express 3.0 начались в 2011 году, средства для проверки совместимости для партнеров появились лишь в середине 2011-го, а реальные устройства ― только в 2012-м.

Компания MSI стала первым в мире [6] производителем, выпустившим материнскую плату с поддержкой стандарта PCI Express 3.0.

Летом 2011 года Gigabyte официально представила материнскую плату G1.Sniper 2, построенную на чипсете Intel Z68 и поддерживающую интерфейс PCI Express 3.0. [7] [8]

PCI Express 4.0 Править

PCI Special Interest Group (PCI SIG) заявила, что PCI Express 4.0 может быть стандартизирован до конца 2016 года [9] , однако на середину 2016 года, когда ряд чипов уже готовился к изготовлению, СМИ сообщали, что стандартизация ожидается в начале 2017 [10] . Ожидается, что он будет иметь пропускную способность 16 GT/s, то есть будет в два раза быстрее PCIe 3.0. [11] [12]

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

code