1. Главная страница » Компьютеры » Nand flash что это

Nand flash что это

Автор: | 16.12.2019

Современному человеку нравится быть мобильным и иметь при себе различные высокотехнологичные гаджеты (англ. gadget — устройство), облегчающие жизнь, да что там скрывать, делающие ее более насыщенной и интересной. И появились-то они всего за 10-15 лет! Миниатюрные, легкие, удобные, цифровые… Всего этого гаджеты достигли благодаря новым микропроцессорным технологиям, но все же больший вклад был сделан одной замечательной технологией хранения данных, о которой сегодня мы и будем говорить. Итак, флэш-память.

Бытует мнение, что название FLASH применительно к типу памяти переводится как «вспышка». На самом деле это не совсем так. Одна из версий его появления говорит о том, что впервые в 1989-90 году компания Toshiba употребила слово Flash в контексте «быстрый, мгновенный» при описании своих новых микросхем. Вообще, изобретателем считается Intel, представившая в 1988 году флэш-память с архитектурой NOR. Годом позже Toshiba разработала архитектуру NAND, которая и сегодня используется наряду с той же NOR в микросхемах флэш. Собственно, сейчас можно сказать, что это два различных вида памяти, имеющие в чем-то схожую технологию производства. В этой статье мы попытаемся понять их устройство, принцип работы, а также рассмотрим различные варианты практического использования.

Поскольку память с такой организацией считается первой представительницей семейства Flash, с нее и начнем. Схема логического элемента, собственно давшего ей название (NOR — Not OR — в булевой математике обозначает отрицание «ИЛИ»), приведена на рисунке.

С помощью нее осуществляется преобразование входных напряжений в выходные, соответствующие «0» и «1». Они необходимы, потому что для чтения/записи данных в ячейке памяти используются различные напряжения. Схема ячейки приведена на рисунке ниже.

Она характерна для большинства флэш-чипов и представляет из себя транзистор с двумя изолированными затворами: управляющим (control) и плавающим (floating). Важной особенностью последнего является способность удерживать электроны, то есть заряд. Также в ячейке имеются так называемые «сток» и «исток». При программировании между ними, вследствие воздействия положительного поля на управляющем затворе, создается канал — поток электронов. Некоторые из электронов, благодаря наличию большей энергии, преодолевают слой изолятора и попадают на плавающий затвор. На нем они могут храниться в течение нескольких лет. Определенный диапазон количества электронов (заряда) на плавающем затворе соответствует логической единице, а все, что больше его, — нулю. При чтении эти состояния распознаются путем измерения порогового напряжения транзистора. Для стирания информации на управляющий затвор подается высокое отрицательное напряжение, и электроны с плавающего затвора переходят (туннелируют) на исток. В технологиях различных производителей этот принцип работы может отличаться по способу подачи тока и чтению данных из ячейки. Хочу также обратить ваше внимание на то, что в структуре флэш-памяти для хранения 1 бита информации задействуется только один элемент (транзистор), в то время как в энергозависимых типах памяти для этого требуется несколько транзисторов и конденсатор. Это позволяет существенно уменьшить размеры выпускаемых микросхем, упростить технологический процесс, а, следовательно, и снизить себестоимость. Но и один бит далеко не предел: Intel уже выпускает память StrataFlash, каждая ячейка которой может хранить по 2 бита информации. Кроме того, существуют пробные образцы, с 4-х и даже 9-битными ячейками! В такой памяти используются технология многоуровневых ячеек. Они имеют обычную структуру, а отличие заключается в том, что заряд их делится на несколько уровней, каждому из которых в соответствие ставится определенная комбинация бит. Теоретически прочитать/записать можно и более 4-х бит, однако, на практике возникают проблемы с устранением шумов и с постепенной утечкой электронов при продолжительном хранении. Вообще, у существующих сегодня микросхем памяти для ячеек характерно время хранения информации, измеряемое годами и число циклов чтения/записи — от 100 тысяч до нескольких миллионов. Из недостатков, в частности, у флэш-памяти с архитектурой NOR стоит отметить плохую масштабируемость: нельзя уменьшать площадь чипов путем уменьшения размеров транзисторов. Эта ситуация связана со способом организации матрицы ячеек: в NOR архитектуре к каждому транзистору надо подвести индивидуальный контакт. Гораздо лучше в этом плане обстоят дела у флэш-памяти с архитектурой NAND.

NAND — Not AND — в той же булевой математике обозначает отрицание «И». Отличается такая память от предыдущей разве что логической схемой.

Устройство и принцип работы ячеек у нее такой же, как и у NOR. Хотя, кроме логики, все-таки есть еще одно важное отличие — архитектура размещения ячеек и их контактов. В отличие от вышеописанного случая, здесь имеется контактная матрица, в пересечениях строк и столбцов которой располагаются транзисторы. Это сравнимо с пассивной матрицей в дисплеях 🙂 (а NOR — с активной TFT). В случае с памятью такая организация несколько лучше — площадь микросхемы можно значительно уменьшить за счет размеров ячеек. Недостатки (куда уж без них) заключаются в более низкой по сравнению с NOR скорости работы в операциях побайтового произвольного доступа.

Существуют еще и такие архитектуры как: DiNOR (Mitsubishi), superAND (Hitachi) и пр. Принципиально нового ничего они не представляют, а лишь комбинируют лучшие свойства NAND и NOR.

И все же, как бы там ни было, NOR и NAND на сегодняшний день выпускаются на равных и практически не конкурируют между собой, потому как в силу своих качеств находят применение в разных областях хранения данных. Об этом и пойдет далее речь…

Где нужна память…

Сфера применения какого-либо типа флэш-памяти зависит в первую очередь от его скоростных показателей и надежности хранения информации. Адресное пространство NOR-памяти позволяет работать с отдельными байтами или словами (2 байта). В NAND ячейки группируются в небольшие блоки (по аналогии с кластером жесткого диска). Из этого следует, что при последовательном чтении и записи преимущество по скорости будет у NAND. Однако с другой стороны NAND значительно проигрывает в операциях с произвольным доступом и не позволяет напрямую работать с байтами информации. К примеру, для изменения одного байта требуется:

  1. считать в буфер блок информации, в котором он находится
  2. в буфере изменить нужный байт
  3. записать блок с измененным байтом обратно

Если еще ко времени выполнения перечисленных операций прибавить задержки на выборку блока и на доступ, то получим отнюдь неконкурентоспособные с NOR показатели (отмечу, что именно для случая побайтовой записи). Другое дело последовательная запись/чтение — здесь NAND наоборот показывает значительно более высокие скоростные характеристики. Поэтому, а также из-за возможностей увеличения объема памяти без увеличения размеров микросхемы, NAND-флэш нашел применение в качестве хранителя больших объемов информации и для ее переноса. Наиболее распространенные сейчас устройства, основанные на этом типе памяти, это флэшдрайвы и карты памяти. Что касается NOR-флэша, то чипы с такой организацией используются в качестве хранителей программного кода (BIOS, RAM карманных компьютеров, мобилок и т. п.), иногда реализовываются в виде интегрированных решений (ОЗУ, ПЗУ и процессор на одной мини-плате, а то и в одном чипе). Удачный пример такого использования — проект Gumstix: одноплатный компьютер размером с пластинку жвачки. Именно NOR-чипы обеспечивают требуемый для таких случаев уровень надежности хранения информации и более гибкие возможности по работе с ней. Объем NOR-флэш обычно измеряется единицами мегабайт и редко переваливает за десятки.

И будет флэш…

Безусловно, флэш — перспективная технология. Однако, несмотря на высокие темпы роста объемов производства, устройства хранения данных, основанные на ней, еще достаточно дороги, чтобы конкурировать с жесткими дисками для настольных систем или ноутбуков. В основном, сейчас сфера господства флэш-памяти ограничивается мобильными устройствами. Как вы понимаете, этот сегмент информационных технологий не так уж и мал. Кроме того, со слов производителей, на нем экспансия флэш не остановится. Итак, какие же основные тенденции развития имеют место в этой области.

Читайте также:  Intel pentium dual core e6300

Во-первых, как уже упоминалось выше, большое внимание уделяется интегрированным решениям. Причем проекты вроде Gumstix лишь промежуточные этапы на пути к реализации всех функций в одной микросхеме.

Пока что, так называемые on-chip (single-chip) системы представляют собой комбинации в одном чипе флэш-памяти с контроллером, процессором, SDRAM или же со специальным ПО. Так, например, Intel StrataFlash в сочетании с ПО Persistent Storage Manager (PSM) дает возможность использовать объем памяти одновременно как для хранения данных, так и для выполнения программного кода. PSM по сути дела является файловой системой, поддерживающейся ОС Windows CE 2.1 и выше. Все это направлено на снижение количества компонентов и уменьшение габаритов мобильных устройств с увеличением их функциональности и производительности. Не менее интересна и актуальна разработка компании Renesas — флэш-память типа superAND с встроенными функциями управления. До этого момента они реализовывались отдельно в контроллере, а теперь интегрированы прямо в чип. Это функции контроля бэд-секторов, коррекции ошибок (ECC — error check and correct), равномерности износа ячеек (wear leveling). Поскольку в тех или иных вариациях они присутствуют в большинстве других брендовых прошивок внешних контроллеров, давайте вкратце их рассмотрим. Начнем с бэд-секторов. Да, во флэш-памяти они тоже встречаются: уже с конвейера сходят чипы, имеющие в среднем до 2% нерабочих ячеек — это обычная технологическая норма. Но со временем их количество может увеличиваться (окружающую среду в этом винить особо не стоит — электромагнитное, физическое (тряска и т. п.) влияние флэш-чипу не страшно). Поэтому, как и в жестких дисках, во флэш-памяти предусмотрен резервный объем. Если появляется плохой сектор, функция контроля подменяет его адрес в таблице размещения файлов адресом сектора из резервной области.

Собственно, выявлением бэдов занимается алгоритм ECC — он сравнивает записываемую информацию с реально записанной. Также в связи с ограниченным ресурсом ячеек (порядка нескольких миллионов циклов чтения/записи для каждой) важно наличие функции учета равномерности износа. Приведу такой редкий, но встречающийся случай: брелок с 32 Мбайт, из которых 30 Мбайт заняты, а на свободное место постоянно что-то записывается и удаляется. Получается, что одни ячейки простаивают, а другие интенсивно исчерпывают свой ресурс. Чтобы такого не было, в фирменных устройствах свободное пространство условно разбивается на участки, для каждого из которых осуществляется контроль и учет количества операций записи.

Еще более сложные конфигурации класса «все-в-одном» сейчас широко представлены такими компаниями как, например, Intel, Samsung, Hitachi и др. Их изделия представляют собой многофункциональные устройства, реализованные в одной лишь микросхеме (стандартно в ней имеется процессор, флэш-память и SDRAM). Ориентированы они на применение в мобильных устройствах, где важна высокая производительность при минимальных размерах и низком энергопотреблении. К таким относятся: PDA, смартфоны, телефоны для сетей 3G. Приведу пример подобных разработок — чип от Samsung, объединяющий в себе ARM-процессор (203 МГц), 256 Мбайт NAND памяти и 256 SDRAM. Он совместим с распространенными ОС: Windows CE, Palm OS, Symbian, Linux и имеет поддержку USB. Таким образом на его основе возможно создание многофункциональных мобильных устройств с низким энергопотреблением, способных работать с видео, звуком, голосом и прочими ресурсоемкими приложениями.

Другим направлением совершенствования флэш является уменьшение энергопотребления и размеров с одновременным увеличением объема и быстродействия памяти. В большей степени это касается микросхем с NOR архитектурой, поскольку с развитием мобильных компьютеров, поддерживающих работу в беспроводных сетях, именно NOR-флэш, благодаря небольшим размерам и малому энергопотреблению, станет универсальным решением для хранения и выполнения программного кода. В скором времени в серийное производство будут запущены 512 Мбит чипы NOR той же Renesas. Напряжение питания их составит 3,3 В (напомню, хранить информацию они могут и без подачи тока), а скорость в операциях записи — 4 Мбайт/сек. В то же время Intel уже представляет свою разработку StrataFlash Wireless Memory System (LV18/LV30) — универсальную систему флэш-памяти для беспроводных технологий. Объем ее памяти может достигать 1 Гбит, а рабочее напряжение равно 1.8 В. Технология изготовления чипов — 0,13 нм, в планах переход на 0,09 нм техпроцесс. Среди инноваций данной компании также стоит отметить организацию пакетного режима работы с NOR-памятью. Он позволяет считывать информацию не по одному байту, а блоками — по 16 байт: с использованием 66 МГц шины данных скорость обмена информацией с процессором достигает 92 Мбит/с!

Что ж, как видите, технология развивается стремительно. Вполне возможно, что к моменту выхода статьи появится еще что-нибудь новенькое. Так что, если что — не взыщите 🙂 Надеюсь, материал был вам интересен.

Потребность в энергонезависимой флэш-памяти растет пропорционально степени продвижения компьютерных систем в сферу мобильных приложений. Надежность, малое энергопотребление, небольшие размеры и незначительный вес являются очевидными преимуществами носителей на основе флэш-памяти в сравнении с дисковыми накопителями. С учетом постоянного снижения стоимости хранения единицы информации в флэш-памяти, носители на её основе предоставляют все больше преимуществ и функциональных возможностей мобильным платформам и портативному оборудованию, использующему такую память. Среди многообразия типов памяти, флэш-память на основе ячеек NAND является наиболее подходящей основой для построения энергонезависимых устройств хранения больших объемов информации.

В настоящее время можно выделить две основных структуры построения флэш-памяти: память на основе ячеек NOR и NAND. Структура NOR (рис.1) состоит из параллельно включенных элементарных ячеек хранения информации. Такая организация ячеек обеспечивает возможность произвольного доступа к данным и побайтной записи информации. В основе структуры NAND (рис.2) лежит принцип последовательного соединения элементарных ячеек, образующих группы (в одной группе 16 ячеек), которые объединяются в страницы, а страницы – в блоки. При таком построении массива памяти обращение к отдельным ячейкам невозможно. Программирование выполняется одновременно только в пределах одной страницы, а при стирании обращение производится к блокам или к группам блоков.

рис.1 Структура NOR рис.2 Структура NAND

В результате различия в организации структуры между памятью NOR и NAND находят свое отражение в их характеристиках. При работе со сравнительно большими массивами данных процессы записи/стирания в памяти NAND выполняются значительно быстрее памяти NOR. Поскольку 16 прилегающих друг другу ячеек памяти NAND соединены последовательно друг с другом без каких-либо контактных промежутков, достигается высокая площадь размещения ячеек на кристалле, что позволяет получить большую емкость при одинаковых технологических нормах. В основе программирования флэш-памяти NAND лежит процесс туннелирования электронов. А поскольку он используется как для программирования, так и для стирания, достигается низкое энергопотребление микросхемы памяти. Последовательная структура организации ячеек позволяет получить высокую степень масштабируемости, что делает NAND-флэш лидером в гонке наращивания объемов памяти. Ввиду того, что туннелирование электронов осуществляется через всю площадь канала ячейки, интенсивность захвата заряда на единицу площади у NAND-флэш ниже, чем в других технологиях флэш-памяти, в результате чего она имеет более высокое количество циклов программирования/стирания. Программирование и чтение выполняются посекторно или постранично, блоками по 512 байт, для эмуляции общераспространенного размера сектора дисковых накопителей.

Основные отличия в параметрах флэш-памяти, изготовленной по различным технологиям, приведены в таблице 1.

Таблица 1. Сравнительные характеристики модулей памяти на основе ячеек NAND и NOR

Параметр NAND NOR
Емкость

1 Гбит (2 кристалла в корпусе)

128 Мбит

Напряжение питания 2.7 – 3.6 В 2.3 – 3.6 В Ввод/вывод х8 / х16 х8 / х16 Время доступа 50 нС (цикл последовательного доступа)
25 мкС (случайный доступ) 70 нС (30 пФ, 2.3 В)
65 нС (30 пФ, 2.7 В) Скорость программирования (типовая) —
200 мкС / 512 байт 8 мкС / байт
4.1 мС / 512 байт Скорость стирания (типовая) 2 мС / блок (16 кБ) 700 мС / блок Совокупная скорость
программирования и стирания (типовая) 33.6 мС / 64 кБ 1.23 сек / блок (основной: 64 кБ)
Читайте также:  Anyview cast как подключить телефон к телевизору

Ведущим лидером в производстве NAND-флэш микросхем является фирма Hynix. Она производит несколько разновидностей микросхем памяти, различающихся по следующим ключевым параметрам:

  • емкость (256 Мбит, 512 Мбит и 1 Гбит);
  • ширина шины, 8 или 16 бит (х8, х16);
  • напряжение питания: от 2.7 до 3.6 В (3.3 В устройства) или от 1.7 до 1.95 В (1.8 В устройства);
  • размер страницы: в х8 устройствах (512 + 16 запасных) байт, в 16х – (256 + 8 запасных) слов;
  • размер блока: в х8 устройствах (16 К + 512 запасных) байт, в 16х – (8 К + 256 запасных) слов;
  • время доступа: случайный доступ 12 мкС, последовательный 50 нС;
  • время программирования страницы 200 мкС;

Все микросхемы NAND-флэш от Hynix характеризуются типичным временем стирания блока 2 мС, имеют аппаратную защиту данных при переходных процессах по питанию и позволяют выполнять 100000 циклов записи/стирания. Гарантированное время сохранности данных составляет 10 лет. Важной особенностью микросхем памяти Hynix является их повыводная совместимость вне зависимости от емкости. Это позволяет очень легко улучшать потребительские характеристики конечного изделия. В таблице 2 приведены базовые параметры всех микросхем NAND-флэш фирмы Hynix.

Таблица 2. Сравнительный перечень микросхем NAND-флэш фирмы Hynix

Об’ем Тип Организаця Напряжение
питания
Диапазон
рабочих
температур*
Сккорость
(ns)
Корпус
256Mbit HY27SS08561M 32Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
HY27US08561M 32Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
HY27SS16561M 16Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
HY27US16561M 16Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA
512Mbit HY27SS08121M 64Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
HY27US08121M 64Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
HY27SS16121M 32Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
HY27US16121M 32Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA
1Gb HY27SA081G1M 128Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
HY27SF081G2M 128Mx8 1.8V C,E,I 50 TSOP/WSOP/FBGA
HY27UA081G1M 128Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
HY27UF081G2M 128Mx8 3.3V C,E,I 50 TSOP/WSOP/FBGA
HY27SA161G1M 64Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
HY27SF161G2M 64Mx16 1.8V C,E,I 50 TSOP/WSOP/FBGA
HY27UA161G1M 64Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA
HY27UF161G2M 64Mx16 3.3V C,E,I 50 TSOP/WSOP/FBGA

* — Диапазоны температур
C — Коммерческий диапазон рабочих температур 0. +70°C
E — Расширенный диапазон рабочих температур -25. +85°C
I — Индустриальный диапазон рабочих температур -40. +85°C

Более детально особенности микросхем памяти Hynix можно рассмотреть на примере кристаллов серии HY27xx(08/16)1G1M. На рис.3 показана внутренняя структура и назначение выводов этих приборов. Линии адреса мультиплексированы с линиями ввода/вывода данных на 8-ми или 16-ти разрядной шине ввода/вывода. Такой интерфейс уменьшает количество используемых выводов и делает возможным переход к микросхемам большей емкости без изменения печатной платы. Каждый блок может быть запрограммирован и стерт 100000 раз. Для увеличения жизненного цикла NAND-флэш устройств настоятельно рекомендуется применять код корректировки ошибок (ECC). Микросхемы имеют выход «чтение/занят» с открытым стоком, который может использоваться для идентификации активности контроллера PER (Program/Erase/Read). Поскольку выход сделан с открытым стоком, существует возможность подключать несколько таких выходов от разных микросхем памяти вместе через один «подтягивающий» резистор к положительному выводу источника питания.


Рис.3 Внутренняя организация микросхем NAND-флэш Hynix

Для оптимальной работы с дефектными блоками доступна команда «Copy Back». Если программирование какой-либо страницы оказалось неудачным, данные по этой команде могут быть записаны в другую страницу без их повторной отправки.

Микросхемы памяти Hynix доступны в следующих корпусах:

  • 48-TSOP1 (12x20x1.2 мм) – рис.4;
  • 48-WSOP1 (12х12х0.7 мм)
  • 63-FBGA (8.5х15х1.2 мм, 6х8 массив шаровых контактов, 0.8 мм шаг)


Рис.4 NAND-флэш Hynix

Массив памяти NAND-структуры организован в виде блоков, каждый из которых содержит 32 страницы. Массив раздел на две области: главную и запасную (рис.5). Главная область массива используется для хранения данных, в то время как запасная область обычно задействована для хранения кодов коррекции ошибок (ECC), программных флагов и идентификаторов негодных блоков (Bad Block) основной области. В устройствах х8 страницы в главной области разделены на две полустраницы по 256 байт каждая, плюс 16 байт запасной области. В устройствах х16 страницы разделены на главную область объемом 256 слов и запасную объемом 8 слов.


Рис.5 Организация массива NAND-памяти

NAND-флэш устройства со страницами 528 байт / 264 слова могут содержать негодные блоки, в которых может быть одна и более неработоспособных ячеек, надежность которых не гарантируется. Помимо этого, дополнительные негодные блоки могут появиться в ходе эксплуатации изделия. Информация о плохих блоках записывается в кристалл перед отправкой. Работа с такими блоками выполняется по процедуре, детально описанной в справочном руководстве по микросхемам памяти Hynix.

При работе с микросхемами памяти выполняются три основных действия: чтение (рис.6), запись (рис.7) и стирание (рис.8).

Процедура чтения данных


Рис.6 Диаграмма процедуры чтения

Процедуры чтения данных из NAND-памяти могут быть трех типов: случайное чтение, постраничное чтение и последовательное построчное чтение. При случайном чтении для получения одной порции данных нужна отдельная команда.

Чтение страницы выполняется после доступа в режиме случайного чтения, при котором содержимое страницы переносится в буфер страницы. О завершении переноса информирует высокий уровень на выход «Чтение/занят». Данные могут быть считаны последовательно (от выбранного адреса столбца до последнего столбца) по импульсу сигнала на Read Enable (RE).

Режим последовательного построчного чтения активен, если на входе Chip Enable (CE) остается низкий уровень, а по входу Read Enable поступают импульсы после прочтения последнего столбца страницы. В этом случае следующая страница автоматически загружается в буфер страниц и операция чтения продолжается. Операция последовательного построчного чтения может использоваться только в пределах блока. Если блок изменяется, должна быть выполнена новая команда чтения.

Процедура записи данных


Рис.7 Диаграмма процедуры записи

Стандартной процедурой записи данных является постраничная запись. Главная область массива памяти программируется страницами, однако допустимо программирование части страницы с необходимым количеством байт (от 1 до 528) или слов (от 1 до 264). Максимальное число последовательных записей частей одной и той же страницы составляет не более одной в главной области и не более двух в резервной области. После превышения этих значений необходимо выполнить команду стирания блока перед любой последующей операцией программирования этой страницы. Каждая операция программирования состоит из пяти шагов:

  1. Один цикл на шине необходим для настройки команды записи страницы.
  2. Четыре шинных цикла требуются для передачи адреса.
  3. Выдача данных на шину (до 528 байт / 264 слов) и загрузка в буфер страниц.
  4. Один цикл на шине необходим для выдачи команды подтверждения для старта контроллера PER.
  5. Выполнение контроллером PER записи данных в массив.

Процедура стирания блока


Рис.8 Диаграмма процедуры стирания

Операция стирания выполняется за один раз над одним блоком. В результате её работы все биты в указанном блоке устанавливаются в «1». Все предыдущие данные оказываются утерянными. Операция стирания состоит из трех шагов (рис.8):

  1. Один цикл шины необходим для установки команды стирания блока.
  2. Только три цикла шины нужны для задания адреса блока. Первый цикл (A0-A7) не требуется, поскольку верны только адреса с А14 по А26 (старшие адреса), А9-А13 игнорируются.
  3. Один цикл шины необходим для выдачи команды подтверждения для старта контроллера PER.

Помимо Hynix микросхемы NAND-памяти выпускаются еще несколькими производителями, среди которых весьма большую номенклатуру и объем продаж изделий имеет компания Samsung. Она производит две базовые линейки микросхем памяти NAND Flash и One NAND™. Модули памяти семейства One NAND™ представляют собой одиночный кристалл памяти со стандартным интерфейсом NOR-флэш, основанный на массиве ячеек NAND-флэш.

Ассортимент выпускаемых компанией Samsung изделий более широк, чем у Hynix. Представлены модули емкостью от 4 Мбит до 8 Гбит, работающие в коммерческом и индустриальном температурных диапазонах. Доступны как 8-ми, так и 16-разрядные модификации на разные диапазоны питающих напряжений: 1,65…1,95 В или 2,7…3,6 В. Выпускаемые Samsung изделия имеют развитые аппаратные возможности защиты данных: защиту от записи для BootRAM, защитный режим для Flash-массива и защиту от случайной записи при включении и выключении.

В остальном устройство микросхем памяти Hynix и изделий семейства NAND Flash от Samsung практически идентично. В этой ситуации предпочтительным для потребителя вариантом является продукция того производителя, рыночная стоимость изделий которого наиболее приемлема.

Читайте также:  1080 Ummy что это

Высокое быстродействие при считывании последовательных потоков данных предопределяет широкую сферу применимости NAND-флэш. Весьма популярным и перспективным рынком для памяти такого типа является рынок твердотельных накопителей для шины USB. В таблице 3 отражены возможности производимых в настоящее время микросхем NAND-флэш применительно к этой сфере. Помимо этого, наиболее выгодным оказывается использование такой памяти в MP3-плеерах, цифровых фотоаппаратах, компьютерах — наладонниках и в другом подобном оборудовании.

Таблица 3. Преимущества и недостатки использования NAND-флэш в твердотельных накопителях

Предисловие

Новый Год – приятный, светлый праздник, в который мы все подводим итоги год ушедшего, смотрим с надеждой в будущее и дарим подарки. В этой связи мне хотелось бы поблагодарить всех хабра-жителей за поддержку, помощь и интерес, проявленный к моим статьям (1, 2, 3, 4). Если бы Вы когда-то не поддержали первую, не было и последующих (уже 5 статей)! Спасибо! И, конечно же, я хочу сделать подарок в виде научно-популярно-познавательной статьи о том, как можно весело, интересно и с пользой (как личной, так и общественной) применять довольно суровое на первый взгляд аналитическое оборудование. Сегодня под Новый Год на праздничном операционном столе лежат: USB-Flash накопитель от A-Data и модуль SO-DIMM SDRAM от Samsung.

Теоретическая часть

Постараюсь быть предельно краток, чтобы все мы успели приготовить салат оливье с запасом к праздничному столу, поэтому часть материала будет в виде ссылок: захотите – почитаете на досуге…

Какая память бывает?

На настоящий момент есть множество вариантов хранения информации, какие-то из них требуют постоянной подпитки электричеством (RAM), какие-то навсегда «вшиты» в управляющие микросхемы окружающей нас техники (ROM), а какие-то сочетают в себе качества и тех, и других (Hybrid). К последним, в частности, и принадлежит flash. Вроде бы и энергонезависимая память, но законы физики отменить сложно, и периодически на флешках перезаписывать информацию всё-таки приходится.

Тут можно подробнее ознакомиться с ниже приведённой схемой и сравнением характеристик различных типов «твердотельной памяти». Или тут – жаль, что я был ещё ребёнком в 2003 году, в таком проекте не дали поучаствовать…


Современные типы «твердотельной памяти». Источник

Единственное, что, пожалуй, может объединять все эти типы памяти – более-менее одинаковый принцип работы. Есть некоторая двумерная или трёхмерная матрица, которая заполняется 0 и 1 примерно таким образом и из которой мы впоследствии можем эти значения либо считать, либо заменить, т.е. всё это прямой аналог предшественника – памяти на ферритовых кольцах.

Что такое flash-память и какой она бывает (NOR и NAND)?

Начнём с flash-памяти. Когда-то давно на небезызвестном ixbt была опубликована довольно подробная статья о том, что представляет собой Flash, и какие 2 основных сорта данного вида памяти бывают. В частности, есть NOR (логическое не-или) и NAND (логическое не-и) Flash-память (тут тоже всё очень подробно описано), которые несколько отличаются по своей организации (например, NOR – двумерная, NAND может быть и трехмерной), но имеют один общий элемент – транзистор с плавающим затвором.


Схематическое представление транзистора с плавающим затвором. Источник

Итак, как же это чудо инженерной мысли работает? Вместе с некоторыми физическими формулами это описано тут. Если вкратце, то между управляющим затвором и каналом, по которому ток течёт от истока к стоку, мы помещаем тот самый плавающий затвор, окружённый тонким слоем диэлектрика. В результате, при протекании тока через такой «модифицированный» полевой транзистор часть электронов с высокой энергией туннелируют сквозь диэлектрик и оказываются внутри плавающего затвора. Понятно, что пока электроны туннелировали, бродили внутри этого затвора, они потеряли часть энергии и назад практически вернуться не могут.

NB: «практически» — ключевое слово, ведь без перезаписи, без обновления ячеек хотя бы раз в несколько лет Flash «обнуляется» так же, как оперативная память, после выключения компьютера.

Там же, на ixbt, есть ещё одна статья, которая посвящена возможности записи на один транзистор с плавающим затвором нескольких бит информации, что существенно увеличивает плотность записи.

В случае рассматриваемой нами флешки память будет, естественно, NAND и, скорее всего, multi-level cell (MLC).

Если интересно продолжить знакомиться с технологиями Flash-памяти, то тут представлен взгляд из 2004 года на данную проблематику. А здесь (1, 2, 3) некоторые лабораторные решения для памяти нового поколения. Не думаю, что эти идеи и технологии удалось реализовать на практике, но, может быть, кто-то знает лучше меня?!

Что такое DRAM?

Если кто-то забыл, что такое DRAM, то милости просим сюда.

Опять мы имеем двумерный массив, который необходимо заполнить 0 и 1. Так как на накопление заряда на плавающем затворе уходит довольно продолжительное время, то в случае RAM применяется иное решение. Ячейка памяти состоит из конденсатора и обычного полевого транзистора. При этом сам конденсатор имеет, с одной стороны, примитивное физическое устройство, но, с другой стороны, нетривиально реализован в железе:


Устройство ячейки RAM. Источник

Опять-таки на ixbt есть неплохая статья, посвящённая DRAM и SDRAM памяти. Она, конечно, не так свежа, но принципиальные моменты описаны очень хорошо.

Единственный вопрос, который меня мучает: а может ли DRAM иметь, как flash, multi-level cell? Вроде да, но всё-таки…

Часть практическая

Flash

Те, кто пользуется флешками довольно давно, наверное, уже видели «голый» накопитель, без корпуса. Но я всё-таки кратко упомяну основные части USB-Flash-накопителя:


Основные элементы USB-Flash накопителя: 1. USB-коннектор, 2. контроллер, 3. PCB-многослойная печатная плата, 4. модуль NAND памяти, 5. кварцевый генератор опорной частоты, 6. LED-индикатор (сейчас, правда, на многих флешках его нет), 7. переключатель защиты от записи (аналогично, на многих флешках отсутствует), 8. место для дополнительной микросхемы памяти. Источник

Пойдём от простого к сложному. Кварцевый генератор (подробнее о принципе работы тут). К моему глубокому сожалению, за время полировки сама кварцевая пластинка исчезла, поэтому нам остаётся любоваться только корпусом.


Корпус кварцевого генератора

Случайно, между делом, нашёл-таки, как выглядит армирующее волокно внутри текстолита и шарики, из которых в массе своей и состоит текстолит. Кстати, а волокна всё-таки уложены со скруткой, это хорошо видно на верхнем изображении:


Армирующее волокно внутри текстолита (красными стрелками указаны волокна, перпендикулярные срезу), из которого и состоит основная масса текстолита

А вот и первая важная деталь флешки – контроллер:


Контроллер. Верхнее изображение получено объединением нескольких СЭМ-микрофотографий

Признаюсь честно, не совсем понял задумку инженеров, которые в самой заливке чипа поместили ещё какие-то дополнительные проводники. Может быть, это с точки зрения технологического процесса проще и дешевле сделать.

После обработки этой картинки я кричал: «Яяяяязь!» и бегал по комнате. Итак, Вашему вниманию представляет техпроцесс 500 нм во всей свой красе с отлично прорисованными границами стока, истока, управляющего затвора и даже контакты сохранились в относительной целостности:


«Язь!» микроэлектроники – техпроцесс 500 нм контроллера с прекрасно прорисованными отдельными стоками (Drain), истоками (Source) и управляющими затворами (Gate)

Теперь приступим к десерту – чипам памяти. Начнём с контактов, которые эту память в прямом смысле этого слова питают. Помимо основного (на рисунке самого «толстого» контакта) есть ещё и множество мелких. Кстати, «толстый»
Во-первых, полный список опубликованных статей на Хабре:

Во-вторых, помимо блога на HabraHabr, статьи и видеоматериалы можно читать и смотреть на Nanometer.ru, YouTube, а также Dirty.

В-третьих, если тебе, дорогой читатель, понравилась статья или ты хочешь простимулировать написание новых, то действуй согласно следующей максиме: «pay what you want»

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

*

code